Trở lại   Chợ thông tin Xe Máy Việt Nam > KHU VỰC KỸ THUẬT > Thư viện Tài liệu

Trả lời
 
Công cụ bài viết Kiểu hiển thị
Motor Vehicle Structures
  #1  
Cũ 28-06-2012, 03:15 PM
adlienphuong adlienphuong đang online
Senior Member
 
Tham gia ngày: May 2012
Bài gửi: 359
Mặc định Motor Vehicle Structures

Hệ thống quảng cáo SangNhuong.com

đây là tài liệu về kết cấu thân xe,có thể các em cần trong việc thiết kế, tài liệu này do anh hiệu k05 truyền lại cho anh đó,khá bổ ích:JFBQ00156070205A::JFBQ00156070205A::JFBQ00156 070205A:

link nhé : http://www.mediafire.com/?kz2nj5dym0g
Contents
Glossary of ‘body-in-white’ components ix
Acknowledgements xiii
About the authors xv
Disclaimer xvi
1 Introduction 1
1.1 Preface 1
1.2 Introduction to the simple structural surfaces (SSS) method 2
1.3 Expectations and limitations of the SSS method 3
1.4 Introduction to the conceptual design stage of vehicle
body-in-white design 4
1.5 Context of conceptual design stage in vehicle body-in-white design 6
1.6 Roles of SSS with finite element analysis (FEA)
in conceptual design 7
1.7 Relationship of design concept filtering to FEA models 8
1.8 Outline summary of this book 8
1.9 Major classes of vehicle loading conditions – running loads
and crash loads 10

2 Fundamental vehicle loads and their estimation 11


2.1 Introduction: vehicle loads definition 11
2.2 Vehicle operating conditions and proving ground tests 11
2.3 Load cases and load factors 14
2.4 Basic global load cases 15
2.4.1 Vertical symmetric (‘bending’) load case 16
2.4.2 Vertical asymmetric case (and the pure torsion analysis case) 16
2.4.3 Longitudinal loads 20
2.4.4 Lateral loads 23
2.5 Combinations of load cases 24
2.5.1 Road loads 25
3 Terminology and overview of vehicle structure types 26
3.1 Basic requirements of stiffness and strength 26
3.1.1 Strength 26
3.1.2 Stiffness 26

vi Contents

3.1.3 Vibrational behaviour 27
3.1.4 Selection of vehicle type and concept 28
3.2 History and overview of vehicle structure types 28
3.2.1 History: the underfloor chassis frame 28
3.2.2 Modern structure types 37

4 Introduction to the simple structural surfaces (SSS) method 47


4.1 Definition of a simple structural surface (SSS) 47
4.2 Structural subassemblies that can be represented
by a simple structural surface (SSS) 48
4.3 Equilibrium conditions 51
4.4 A simple box structure 52
4.5 Examples of integral car bodies with typical SSS idealizations 56
4.6 Role of SSS method in load-path/stiffness analysis 60
Appendix Edge load distribution for a floor with a simple grillage 63

5 Standard sedan (saloon) – baseline load paths 66


5.1 Introduction 66
5.1.1 The standard sedan 66
5.2 Bending load case for the standard sedan (saloon) 68
5.2.1 Significance of the bending load case 68
5.2.2 Payload distribution 68
5.2.3 Free body diagrams for the SSSs 69
5.2.4 Free body diagrams and equilibrium equations for each SSS 70
5.2.5 Shear force and bending moment diagrams
in major components – design implications 72
5.3 Torsion load case for the standard sedan 75
5.3.1 The pure torsion load case and its significance 75
5.3.2 Overall equilibrium of vehicle in torsion 76
5.3.3 End structures 76
5.3.4 Passenger compartment 78
5.3.5 Summary – baseline closed sedan 82
5.3.6 Some notes on the standard sedan in torsion 84
5.3.7 Structural problems in the torsion case 86
5.4 Lateral loading case 90
5.4.1 Roll moment and distribution at front and rear suspensions 91
5.4.2 Additional simple structural surfaces for lateral load case 92
5.5 Braking (longitudinal) loads 98
5.6 Summary and discussion 102

6 Alternative construction for body subassemblies and model variants 103

6.1 Introduction 103
6.2 Alternative construction for major body subunits 104
(a) Rear structures 104
6.2.1 Rear suspension supported on floor beams 104
6.2.2 Suspension towers at rear 106
(b) Frontal structures 107
6.2.3 Grillage type frontal structure 107
6.2.4 Grillage type frontal structure with torque tubes 109
6.2.5 Missing or flexible shear web in inner fender 110
6.2.6 Missing shear web in inner fender: upper rail direct
to A-pillar 111
6.2.7 Sloping inner fender (with shear panel) 113
6.2.8 General case of fender with arbitrary-shaped panel 117
6.3 Closed model variants 118
6.3.1 Estate car/station wagon 119
6.3.2 Hatchback 120
6.3.3 Pick-up trucks 122
6.4 Open (convertible/cabriolet) variants 128
6.4.1 Illustration of load paths in open vehicle: introduction 128
6.4.2 Open vehicle: bending load case 128
6.4.3 Open vehicle: torsion load case 130
6.4.4 Torsion stiffening measures for open car structures 132
6.4.5 Simple structural surfaces analysis of an open car structure
torsionally stiffened by ‘boxing in’ the engine compartment135


7 Structural surfaces and floor grillages 139

7.1 Introduction 139
7.2 In-plane loads and simple structural surfaces 140
7.2.1 Shear panels, and structures incorporating them 140
7.2.2 Triangulated truss 146
7.2.3 Single or multiple open bay ring frames 149
7.2.4 Comparison of stiffness/weight of different simple
structural surfaces 153
7.2.5 Simple structural surfaces with additional external loads 154
7.3 In-plane forces in sideframes 156
7.3.1 Approximate estimates of pillar loads in sideframes 157
7.4 Loads normal to surfaces: floor structures 161
7.4.1 Grillages 161
7.4.2 The floor as a load gatherer 163
7.4.3 Load distribution in floor members 163
7.4.4 Swages and corrugations 168

8 Application of the SSS method to an existing vehicle structure 171


8.1 Introduction 171
8.2 Determine SSS outline idealization from basic
vehicle dimensions 171
8.2.1 Locate suspension interfaces to body structure
where weight bearing reactions occur 172
8.2.2 Generation of SSSs which simulate
the basic structural layout 173
8.3 Initial idealization of an existing vehicle 174
8.4 Applied loads (bending case) 175
8.4.1 Front suspension tower 178
8.4.2 Engine rail 179
8.4.3 Centre floor 179
8.4.4 Dash panel 181
8.4.5 Rear seat cross-beam 181
8.4.6 Rear floor beams 183
8.4.7 Rear panel 184
8.4.8 Sideframe 185
8.4.9 Bending case design implications 185
8.5 Applied loads (torsion case) 186
8.5.1 Rear floor beams 187
8.5.2 Front suspension towers and engine rails 188
8.5.3 The main torsion box 189
8.5.4 Torsion case design implications 191
8.6 An alternative model 192
8.6.1 Front suspension towers and inner wing panels 193
8.6.2 Rear floor beams 194
8.6.3 The main torsion box 194
8.6.4 Torsion case (alternative model) design implications 196
8.7 Combined bending and torsion 196
8.8 Competing load paths 197

9 Introduction to vehicle structure preliminary design SSS method 198


9.1 Design synthesis vs analysis 198
9.2 Brief outline of the preliminary or conceptual design stage 199
9.3 Basic principles of the SSS design synthesis approach 200
9.3.1 Starting point (package and part requirements) 200
9.3.2 Suggested steps 202
9.3.3 Suggested priorities for examination of local
subunits and components 202
9.3.4 Positioning of major members 203
9.3.5 Member sizing 203
9.4 Relation of SSS to FEA in preliminary design 204
9.4.1 Scope of SSS method 204
9.4.2 Limitations and assumptions of SSS method 204
9.4.3 Suggested role of SSS method 204
9.4.4 Role of FEA 204
9.4.5 Integration of SSS, FEA and other analyses 205
9.5 The context of the preliminary design stage in relation
to the overall body design process 206
9.5.1 Timing 206
9.5.2 Typical analytical models (FEM etc.) used
at different stages in the design cycle 208

10 Preliminary design and analysis of body subassemblies using
the SSS method 209


10.1 Introductory discussion 209
10.1.1 Alternative 1: employ a bulkhead 211
10.1.2 Alternative 2: move where the load is applied
to a more favourable location 212
10.1.3 Alternative 3: transfer the load to an SSS
perpendicular to the rear compartment pan 212
10.2 Design example 1: steering column mounting/dash assembly 212
10.2.1 Design requirements and conflicts 212
10.2.2 Attached components 213
10.3 Design example 2: engine mounting bracket 220
10.3.1 Vertical direction 220
10.3.2 Lateral direction 223
10.3.3 Fore–aft direction 223
10.3.4 Summary 224
10.3.5 Discussion 225
10.4 Design example 3: front suspension mounting 225
10.4.1 Forces applied to and through the suspension 225
10.4.2 Forces on the body or subframe 229

11 Fundamentals and preliminary sizing of sections and joints 233


11.1 Member/joint loads from SSS analysis 233
11.2 Characteristics of thin walled sections 233
11.2.1 Open sections 233
11.2.2 Closed sections 236
11.2.3 Passenger car sections 238
11.3 Examples of initial section sizing 240
11.3.1 Front floor cross-beam 240
11.3.2 The ‘A’-pillar 241
11.3.3 Engine longitudinal rail 243
11.4 Sheet metal joints 244
11.4.1 Spot welds 246
11.5 Spot weld and connector patterns 247
11.5.1 Spot welds along a closed section 249
11.6 Shear panels 251
11.6.1 Roof panels 251
11.6.2 Inner wing panels (inner fender) 252

12 Case studies – preliminary positioning and sizing of major
car components 253


12.1 Introduction 253
12.2 Platform concept 253
12.3 Factors affecting platform capability for new model variants 255
12.4 Examples illustrating role of SSS method 256
12.4.1 Weight 256
12.4.2 Vehicle type 257
12.4.3 Sedan to station wagon/estate car – rear floor cross-member 257
12.4.4 Closed structure to convertible 257
12.4.5 Dimensions 258
12.5 Proposal for new body variants from an existing platform 259
12.5.1 Front end structure 260
12.5.2 Dash 261
12.5.3 Floor 261
12.5.4 Cab rear bulkhead (pick-up truck) 263
12.5.5 Sideframe and cargo box side 263
12.5.6 Rear compartment pan and cargo box floor 263
12.5.7 Steps for preliminary sizing of components 264
Trả lời với trích dẫn


CHUYÊN MỤC ĐƯỢC TÀI TRỢ BỞI
Re: Motor Vehicle Structures
  #2  
Cũ 28-06-2012, 03:15 PM
quang.tt quang.tt đang online
Senior Member
 
Tham gia ngày: May 2012
Bài gửi: 376
Mặc định

Hệ thống quảng cáo SangNhuong.com

có nút thanks đó anh.chắc phải lập 1 nhóm dịch thuật để dịch tài liệu thui
Trả lời với trích dẫn


Re: Motor Vehicle Structures
  #3  
Cũ 28-06-2012, 03:15 PM
jinhone-vn jinhone-vn đang online
Senior Member
 
Tham gia ngày: May 2012
Bài gửi: 368
Mặc định

oài cái này kím cũng khó lém đấy, soyry vì anh ko giới thiệu về nó,thanks mod anh admin đã edit nha hihihi
Trả lời với trích dẫn


CHUYÊN MỤC ĐƯỢC TÀI TRỢ BỞI
Trả lời


Công cụ bài viết
Kiểu hiển thị

Quyền viết bài
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Mở
Chuyển đến

SangNhuong.com



© 2008 - 2025 Nhóm phát triển website và thành viên SANGNHUONG.COM.
BQT không chịu bất cứ trách nhiệm nào từ nội dung bài viết của thành viên.